Solar System Debris -- small constituents

Key points: What asteroids, comets, meteors, and Kuiper Belt objects are; where they come from

Several types of material are "left over" from the formation of the Solar System:

littleprince.jpg (21945 bytes)

Asteroids or "Minor Planets"

The illustration to the left is from the highly fanciful classic children's story "The Little Prince" by Antione de Saint-Exupery, and shows the hero gardening on "his" asteroid B-612. From http://www.poetryfountain.com/littleprince.html. Asteroids generally orbit between Mars and Jupiter. About 100 of them have diameters larger than 100 km. The largest is Ceres, 1000 km in diameter and comprising about 30% of the total mass of the asteroid belt. All large asteroids are round because the force of gravity overwhelms the chemical bonding forces in rocks.

However, most asteroids are small enough  (< 10 km in diameter) that they can retain irregular spherical shapes -- their self-gravity is not strong enough to force them into spheres.

Gaspra Picture of the asteroid Gaspra from the Galileo spacecraft
Ida Picture of Ida (with its tiny moon) from Galileo.

Orbits of Asteroids

 

Most asteroids have slightly elliptical orbits lying about 2.2-3.3 times the distance of the earth from the sun (this distance is called an astronomical unit, or AU). These are called Main Belt asteroids. (From U. Tenn. Ast 161, http://csep10.phys.utk.edu/astr161/lect/solarsys/revolution.html)

Main Belt asteroid location between Mars and Jupiter
semimajo.jpg (26009 bytes) The distribution of orbital radii shows sharply confined zones, due to the influence of Jupiter's gravitational field. Jupiter's gravitational effects are also probably responsible for the presence of the asteroid belt at all - the continual changes of asteroid orbits by the gravity from Jupiter would have kept the asteroids colliding with each other and made it impossible for them to coalesce into a single small planet.

(http://cfa-www.harvard.edu/iau/lists/MPDistribution.html)

Asteroid.gif (129840 bytes) However, a few asteroids have very eccentric orbits that cross the earth's orbit -- they are called "Apollos" or “Earth-crossing asteroids”. (in recent years asteroids have passed within a 100,000 km of the earth!)

These objects illustrate the potential for asteroids being captured by planets or even colliding with planets.

Estimates indicate that most of the Earth-crossing asteroids are likely to collide with the earth in the next few tens of millions of years. Given that the Solar System is very much older than this, is the population of Earth-crossing asteroids replenished in some fashion?

Yes -- calculations indicate that Jupiter's gravitational field is strong enough to perturb asteroid orbits so that eventually some Main Belt asteroids will be deflected and become Earth-approaching asteroids.

Origin of the Asteroids

Are they the remains of a smashed planet?

More likely is that they are remnants of material that never formed a planet. The strong gravitational force of Jupiter would prevent matter from accreting and forming a planet by continually upsetting the orbits of objects in the asteroid zone, causing a high rate of collisions..

What are asteroids made of?

Asteroids have been studied compositionally by looking at the spectra of light they reflect: rocks, minerals, ices, and metals all have distinct patterns of absorbing or reflecting light.

Three broad categories

Meteors and Meteorites

(From Terry Platt, http://leonids.hq.nasa.gov/leonids/gallery/files/10.html)

When a small piece of asteroid material gets captured by the gravity of the earth, it hits the upper atmosphere at very high speed and vaporizes, appearing as a meteor.   A meteorite is the part of a meteor that reaches the ground (and survives). Meteorites have proven to be an invaluable resource in understanding the Solar System – some are relatively pristine examples of materials left over from the formation of the Solar System. If the meteorite is large enough, it will leave a crater where it smashed into the earth.buttonex.jpg (1228 bytes)

meteor.gif (711703 bytes)

Meteor craters are found all over the earth (as well as on other planets):

cratbosghana.gif (13882 bytes)cratclrwtcan.gif (11498 bytes)cratgossaus.gif (11771 bytes)cratkararus.gif (14797 bytes)cratmanican.gif (14186 bytes)cratwolfcrk.gif (8718 bytes)

However, as is evident from the pictures above, on Earth they quickly erode away and become much less evident than they are on other bodies with no atmosphere and no weather. The ages for meteorites are usually between 4.55 to 4.65 billion years, which we equate with to the age of the Solar System.buttonbook.jpg (10323 bytes)

A number of meteorites appear to be pieces of asteroids freed in collisions, and by studying them in comparison with asteroids of similar composition, we can probe directly what asteroids are made of.

Meteor showers occur roughly 10 times a year. In these events, the rate at which meteors are observed increases dramatically over a period of a few days. The rates can even exceed 100 meteors per hour. Some meteor showers can be matched up with debris left along a cometary orbit that the earth crosses at the time of the shower..

Comets

 

Comet Hale Bopp (From T. and D. Hallas, http://www.astrophoto.com/index.htm)

 

Because they can be very dramatic sights, comets have often been the subject of superstition buttonex.jpg (1228 bytes)

"...like a comet burned

That fires the length of

      Ophiuchus huge

In th'arctic sky, and from his

       horrid hair

Shakes pestilence and war."

-- Milton, "Paradise Lost," II, 708 - 711

Comet Hale-Bopp over Lake Mono
Comet with long tail A comet is actually a small, icy body that brightens considerably and produces a magnificent tail when it gets close to the sun. The solid portion of the comet is called the nucleus and is typically 1 to 10 km in diameter.  (Fred Burger,  http://www2.jpl.nasa.gov/comet/hyakutake/burger5.html )
linear_milan_big.gif (157327 bytes) As comets orbit within the solar system, they appear to move against the pattern of stars. (from http://antwrp.gsfc.nasa.gov/apod/image/0007/?M=A/)
Giotto picture of the nucleus of Comet Halley Probes visited Comet Halley on its last trip near the earth. The nucleus was surprisingly dark. The dark material is likely to be similar to tar left behind when lighter substances evaporate. The tail starts from sites where the crust is broken and icy material is evaporating rapidly into space. To the right is an image of the nucleus of Comet Wild 2, in a more quiescent state so the surface is more visible. (left, from http://science.nasa.gov/newhome/headlines/ast20oct98_1.htm

right from Stardust team, JPL, NASA, via APOD: http://antwrp.gsfc.nasa.gov/apod/ap040103.html)

 

cometwild2.jpg (18701 bytes)

HST pictures of Comet Hale Bopp show evidence for a similar situation to the image of the nucleus of Comet Halley:

HST pictures of the nucleus of Hale-Bopp

Animation of material streaming out of nucleus of Hale-Bopp The animation to the left of the data from Comet Hale Bopp makes even clearer what is happening. The comet nucleus is like a giant pinwheel, ejecting material into space from an icy region that is exposed. This next animation shows how it might look if we were really close (warning: large file (5Mb)) en00500_1.jpg (18578 bytes) (reload page to restart lecture animations) (animation from STScI http://hubblesource.stsci.edu/sources/video/clips/details/hale-bopp.php)

As the comet ages, it eventually runs out of icy material and becomes an "asteroid".

Where do comets come from?

Jan Oort, a Dutch astronomer, noticed that the aphelia (most distant point from the sun) of comet orbits describe a large spherical cloud around the orbits of the nine planets. Although we have never detected objects in this cloud, we think Oort's idea is correct. We believe that most comets come from this "Oort Cloud."

Not all comets originate in the Oort cloud -- others appear to come from another region closer to the sun lying between roughly Neptune and some distance beyond Pluto. We have started to find a large number of objects in this region, called the Kuiper Belt.

Oort Cloud and Kuiper Belt diagram Artist's comcept of Oort Cloud and Kuiper Belt

The Oort

cloud and Kuiper Belt from Univ. of Michigan, D. Yeomans http://www.solstation.com/stars/oort.htm and The Essential Cosmic Perspective, Bennett et al.

The Oort Cloud and Kuiper Belt, and hence comets, are remnants of the cloud from which the sun and planets formed.

How do comets reach the inner Solar System?

Two forms of gravitational interaction play important roles in perturbing comets toward the inner solar system:

1) As the sun orbits the center of Milky Way, the varying gravitational force of nearby stars can cause a comet to adopt a new orbit which brings it close to the sun and planets.

2) A comet passing into the inner Solar System can pass close enough to a planet (Jupiter is the most effective at this) to have its orbit strongly modified.

As comets move from the outer Solar System towards the sun, they may experience strong gravitational forces, especially from Jupiter. Such interactions can result in:

Comet Orbits

Comets typically have very elongated orbits which are not confined to the plane of the Solar System like the planets and normal asteroids.

Cometary orbits come in two types:

-- short period with periods of less than 200 years, making a number of returns over historybuttonbook.jpg (10323 bytes)

-- long period with periods of 200 years and up and only come "once" within human records

(this division is arbitrary; it can be very difficult to tell whether a comet has a very elongated, elliptical orbit or an orbit this is not closed such as a parabola or hyperbola)

Halley's Comet is the most famous short-period comet: Here is its orbit
Orbit of Halley's Comet
Top view of orbit of Halley's Comet

Comet Hale-Bopp is a long period comet: its orbit projects back to far beyond the orbit of Pluto.

Many of the long period comets may be entering the inner Solar System for the first time.

For the ride of your life, drive a comet! Use this link to get it:http://www.windows.ucar.edu/tour/link=/comets/comet_model_interactive.html

Evolution of a Comet

As a comet moves into the inner Solar System, the sun begins to heat its outer layers. These layers melt and evaporate to form the coma and eventually also the comet's tail.

The comet's tail has two components -- a dust tail and a ion tail made of glowing gas. (from http://www2.jpl.nasa.gov/basics/bsf1-3.html)

Diagram of comet tails Matching picture of comet tails

Comet Tails

Comet tails always point away from the sun. Why? Radiation from the sun -- light--hits the dust particles and pushes them outward.

Each time a comet passes through the inner Solar System, some fraction of it is evaporated away. The solid particles that are lost by the comet still follow roughly in its orbit..

A few comets have even been observed to disintegrate as they passed close to the sun, with the debris generally following the orbit of the former comet..

The leftover dust from comet tails produces meteor showers, if the earth passes through the dust trail as it orbits the sun.

Diagram of comet debris trail IRAS satellite image showing debris trail From Mark Sykes

Kuiper Belt Objects

Animation showing motion of Kuiper Belt Object Over the last decade, we have started to discover objects mostly outside the orbit of Pluto that are thought to contain mostly icy material and could be thought of as a reservoir of short period comet nuclei (although the ones found so far are much bigger than typical comet nuclei). Pluto is thought to be closely related to them in origin and composition. This zone of objects is called the Kuiper Belt after former UA planetary astronomer Gerard Kuiper. Identify the Kuiper Belt Object in this computerized blink comparison. (from Dave Jewitt, http://www.ifa.hawaii.edu/faculty/jewitt/kb.html)

In fact, in 2005 an object a bit larger than Pluto was discovered, in an orbit more than twice as large (97 AU) and one that is even more tilted than Pluto's compared with the orbits of the large planets. The discovery of Kuiper Belt Objects as large as Pluto has brought Pluto's status as a planet, as opposed to a member of the Kuiper Belt, into serious questionbuttonex.jpg (1228 bytes)  In fact, on August 24, 2006 astronomers voted to strip Pluto of its planet status, so it is now considered as one of the larger members of the Kuiper Beltbuttonex.jpg (1228 bytes)

We are beginning to get a peek at a class of objects still farther out, with the discovery of Sedna, nearly as large as Pluto and on a very elliptical orbit that takes 10,000 years for a circuit. Right now, Sedna is about 86 AU from the sun (Pluto is only half so far on average), but it gets up to 800 AU from the sun. Sedna gets nearly as far out as the Oort cloud and therefore supports its existence.  Here is a quick look at the whole system. Robert Hurt, http://www.spitzer.caltech.edu/Media/releases/ssc2004-05/ssc2004-05v1.shtml sedna1.gif (1780817 bytes)

Test your understanding before going onbuttongrad.jpg (11232 bytes)

For more about comets, http://cse.ssl.berkeley.edu/SegwayEd/lessons/cometstale/com.html

plutopup.jpg (17010 bytes)

 

 

 

 

Child's book from,http://www.gasolinealleyantiques.com/cartoon/disney.htm

sirtflaunch.jpg (4413 bytes)

mammotha.jpg (13963 bytes)

 

 

 

Woolly Mammoth, symbol of the ice age, from http://news.nationalgeographic.com/news/2001/11/1101_WoolyMammoth.html

Click to return to syllabus

Click to return to Pluto

hypertext copyright.jpg (1684 bytes) G. H. Rieke

Click to go to Long Term Climate