
Chapter 9: Interferometry and Aperture Synthesis 

9.1 Introduction 

How can we get higher angular resolution than the simple full width at half maximum of the Airy 

function,/D, where D is the largest that we can afford?  One answer is indicated in the bottom panel of 

Figure 8.18. If we mask off all of our telescope mirror except two small apertures of diameter d at the 

edge, the “central peak” of our image becomes twice as sharp as the Airy function but with huge 

sidelobes, that is fringes. The figure oversimplifies the situation, since the telescope will still make 

superimposed images of diameter /d through each of the apertures, called the primary beam of the 

interferometer. If the apertures are separated by a distance D’, the fringe spacing projected up onto the 

sky will be /D’, or for convenience if we assume D’ ~ D, /D.  Since this angular distance corresponds to 

adjacent maxima, the fringe half width at full maximum (or “beam” width) is ~ /2D; that is, we have 

doubled the resolution (at the expense of losing a lot of light). In principle, we could try to determine if a 

source was resolved by measuring the width of the fringe “peaks”, but it is easier and more quantitative 

to base the measurement on the filling-in of the dark fringes as the source becomes larger, the fringe 

contrast. We describe this in terms of the visibility: 

  
         

         
                 

where Imax and Imin are the maximum and minimum fringe intensities (separated by ~ /2D), respectively. 

The structure of a resolved source can be probed by varying the spacing of the apertures and measuring 

the visibility as a function of this spacing.  

As a thought experiment, one could place pairs of apertures one at a time at all possible distances and 

clock angles over the primary mirror of the telescope and use the information (rather painfully) to 

reconstruct the image that would have been obtained with the telescope without apertures. At least the 

various patterns of fringes should have all the information in that image. This procedure is the basis of 

aperture synthesis.  

9.2 Radio Interferometry 

The Byrd Green Bank Telescope is the largest fully steerable filled-aperture radio telescope, with a size 
of 100 X 110 meters.  The runners up are the Effelsberg telescope, with a diameter of 100 meters, and 
the Jodrell Bank Lovell Telescope, 76 meters in diameter.  The collecting areas of these telescopes are 

awesome, but their angular resolutions are poor; at 21 cm wavelength, /D for a 100 meter telescope is 
about 7 arcmin. These huge structures are difficult to keep in accurate alignment and are subject to 
huge forces from wind. Proposals for larger telescopes (e.g., the Jodrell Bank Mark IV and V telescopes 
at 305 and 122 m respectively) pose major engineering challenges for modest improvements in 
resolution and have also proven to press the limits of what other humans are willing to purchase for 
astronomers.  
 
Other approaches are needed. The Arecibo disk is fixed in the ground and achieves limited ability to 
point by moving its feed; this concept allows a diameter of 259m. However, the dish must be spherical 



and its spherical aberration is corrected near to focus; the operating frequency range extends to 10 GHz, 
although the ~ 2mm rms surface accuracy results in reduced aperture efficiency at the highest 

frequencies.  The resolution is a bit worse than 2 arcmin (/D) at 21cm. Clearly some other approach is 
needed to make radio images at resolutions complementary to those in the visible.  
 
This approach is to link multiple telescopes through interferometry. Heterodyne receivers provide great 
flexibility for interferometry because their outputs retain phase information about the incoming signal. 
Therefore, the functions underlying the interference in the instruments can be conducted off-line.  
Heterodyne-based interferometers allow implementation of concepts like aperture synthesis, which we 
explored as a thought experiment in the introduction to this chapter.  As a result, very large baselines 
allow efficient imaging at arcsec or sub-arcsec resolution and large collecting areas can be accumulated 
by combining the outputs of many telescopes of modest size and cost.  
 
9.2.1 Two-Element Interferometers 
 
The basic radio two-element 
interferometer is shown in Figure 9.1. 
For simplicity, we assume that the signal 
is at a single frequency and instant of 
time so the path difference to the two 
telescopes can be described by a single 
phase difference.  
 
Since even the most complex 
combination of multiple radio 
telescopes can be treated as a large 
number of two-element 
interferometers, analyzing the case in 
Figure 9.1 sets the foundation for the 
discussion of more advanced telescope 
arrays used for aperture synthesis. 
 
As shown in Figure 9.1, the signals are combined in a cross-correlator, where they are multiplied: 

                                
       

     
  

 
                   

 

where  =2 and RC is the cosine response. The simplification is possible because the terms other than 
the final one represent multiplication of uncorrelated quantities and hence average to zero.  As a result, 
many potential sources of noise, such as fluctuations in the receiver gains or outside interference, drop 
out of the signal. The amplitudes V1 and V2 are proportional to the electric field generated from the 
signal from each telescope, i.e., the gains of the two telescopes. Since the power goes as the 
autocorrelation of the field, the fields are proportional to the square roots of the telescope areas; 
therefore,  V2 is proportional to the flux density of the source times (A1 A2)1/2, where A1 and A2 are the 
collecting areas of the two telescopes. Thus, the effective area of the interferometer is 

          
              

                              

That is, for a two-element interferometer, the effective area is that of one of the elements (assuming 
they are identical).  The noise from the two elements is, however, independent, so the noise in the 
correlator output is reduced by the square root of two compared with that from a single telescope. That 

 

Figure 9.1. A radio two-element interferometer. After 

Garrett. 



is, the sensitivity of a two-element interferometer is equal to that of a single dish with area square root 
of two times the area of one of the elements (not the combined area of the two elements). If an 
interferometer consists of an array of N identical telescopes, then there are N(N-1) possible 
independent two-element interferometers within the array. The net sensitivity is then given by a 
modification of the radiometer equation (8.8): 

 
 

 
 
 
  

  

  
                   

                    

 

Returning to Figure 9.1, different directions in the plane of the figure yield different values for  g and so 
by the last term in equation (9.2), the response of the interferometer varies sinusoidally across the sky 
in the direction along the vector between the two telescopes. Equivalently, if a source moves across the 
field in the plane of the figure, the output will vary sinusoidally as in equation (9.2), yielding the 
interferometer fringes. At the same time, the individual signals V1 and V2 will fall off for sources off the 
axis of the telescopes, defining the primary beam of the interferometer within which the fringes have 
reasonable amplitudes.   The fringe phase is 

      
 

 
                              

where   is the direction toward the source measured as the angle between B and s (the vector from one 
telescope to the other and the vector toward the source, respectively), and B is the distance between 
the telescopes. The change of phase with source direction is 
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A change in the phase by 2, corresponding to the fringe period, occurs for a change in   by /B sin . 

We therefore have that the beamwidth,  S, is 

   


      
                

Thus, the period is inversely proportional to the baseline, B (as we derived less rigorously in the 
introduction) and the fringe phase is a sensitive measure of the source position.  It is important that 
these quantities depend only on the phase difference between the telescopes, and therefore on the 
baseline and measures of time – issues in imaging with the individual filled apertures such as tracking 
accuracy, wind buffeting, and so forth are not critical (except to the relatively relaxed tolerances 
required of the individual telescopes).  
 
In practice, as the interferometer tracks a source a constantly varying delay must be imposed on the 
signal from the leading telescope (to the right in Figure 9.1) to compensate for the change in path 
length.  This correction can only be precise in one direction, called the delay center, since the path 
difference changes with direction. Thus, there is a limit on the size of the field observable without 
smearing the beam. This behavior can be understood by visualizing the interferometer fringes over a 
range of wavelengths. At the center of the field, they will all be at the same phase and the visibility will 
be large. However, they will have different fringe periods and as one goes away from this central field 
point the fringes will become displaced in phase relative to one another and the visibility will decline, 
thus imposing a limit on the useful interferometer field.  A modest range of frequencies can be 
accommodated with an acceptable loss of efficiency, but for large bandwidths it is necessary to divide 
the signal into frequency sub-bands and impose appropriate delays on each one. If the inaccuracy of this 

delay is   g, the resulting inaccuracy of the path is c   g; for reasonable efficiency in the interference, 
this path variation must be small compared with the range of wavelengths in the instrument bandwidth:  

    

 
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From Figure 9.1,  
                          

or 

                                   

where    is the angular distance from the delay center. Combining equations (9.6), (9.7), and (9.9), we 
find the requirement that 

                      
to avoid “bandwidth smearing” that broadens the beam in the radial direction. A related requirement is 

that the correlator must sample the signals fast enough that the change in beam direction is less than  S, 
or the image will be subject to “time smearing.” In the following, we will ignore these complexities (or 
assume that the engineering staff has provided sufficient electronics to banish them) and discuss basic 
interferometer performance. 
 
The cosine form in equation (9.2) is sensitive on an extended source only to the symmetric part of the 
source distribution. The antisymmetric part can be recovered by dividing the output of the telescopes 
into two signals and applying a 90o phase shift to the signal from one of the telescopes in one of these 

pairs. This pair is also cross-correlated to yield an output as in equation (9.2) but with a sin(  g) 
oscillatory component and a sine response analogous to that of equation (9.2).  

    
  

 
                           

Correlators with these dual outputs are called complex correlators, because their outputs are generally 
manipulated as complex numbers combining the amplitude and phase of the signal. The complex 
visibility is   

                                
with the visibility amplitude 

     
    

                

and phase 

        
  
  
                

The complex visibility is the response of an interferometer with a complex correlator to an extended 
source. By the Van Cittert-Zernicke Theorem, the intensity distribution of the source on the sky is the 
Fourier Transform of the visibility (to be discussed further in Section 9.2.4). 
 
  



9.2.2. Aperture Synthesis 
 
The two-element interferometer 
provides very limited information 
about the structure of a source 
unless the telescopes are moved 
to change the baseline spacing 
and the observations repeated. 
This process can be accelerated by 
putting a number of telescopes 
along the baseline; if there are N 
telescopes, then their outputs can 
be combined to yield N(N-1) 
unique baselines (of course, with 
N(N-1) correlators to carry out the 
processing). Each baseline adds a 
new Fourier component (unique 
fringe spacing) to the image.  
Furthermore, the sensitivity grows 
with the increasing number of 
telescopes as shown in equation 
(9.4). 
 
Figure 9.2 illustrates the process. 
The number and placement of the 
telescopes is indicated by the 
shaded circles. Trace a is the field 
pattern obtained from a two-
element interferometer with 
elements separated by b. It 
consists of fringes convolved with 
the primary beams of the constituent telescopes.  Trace b shows the fringe patterns resulting if one 
more telescope is added. As shown in trace c, these fringes can be combined to provide a central 
response peak, called the synthesized beam, but with a number of large sidelobes. Trace d is the fringe 
patterns from an interferometer with four telescopes; trace e shows that now the sidelobes are 
suppresses substantially (but are not gone by any means) and a reasonably defined synthesized beam 

with a width of ~/b results. This beam appears to be sitting in a broad depression, which results from 
the absence of very small telescope separations and indicates a lack of sensivity to highly extended 
sources.  
 
Figure 9.2 is a hypothetical linear array. The Westerbork Synthesis Radio Telescope (WSRT) is an 
example of a real-world linear, multi-element interferometer. It has 14 telescopes along a 2.7 km 
baseline oriented east-west; 10 telescopes are fixed, and four are movable on railroad tracks to allow 
repeated measurements of a source to generate new baselines. Its receivers cover the range from 115 
MHz to 8.6 GHz. The Australian Telescope Compact Array (ATCA) is another east-west interferometer, 
consisting of five 22-m telescopes that can be moved along a 3km railroad track and a sixth telescope 
3km to the west of the western end of the track. It is the prime southern-hemisphere cm-wave 
telescope array and operates over the 0.6 to 90 GHz range.  

 

Figure 9.2. Improvement in field pattern quality (the images are 

the autocorrelation) with increasing number of interferometer 

baselines. From Condon and Ransom. 



 
As described up to 
now, telescopes like 
the WSRT would 
produce beams well 
confined in one 
coordinate but with 
widths equal to the 
primary beam width 
of the constituent 
telescopes in the 
other. Fortunately, 
much better 
performance is 
possible. To form 
images, from the 
introduction, we 
would like to have our 
telescopes cover the 
area that would be 
occupied by a filled telescope mirror  - in the case of Westerbork, a 2.7 km diameter disk.  We think of 
this disk in terms of a coordinate system in u, v, and w; w is the direction toward the source and u and v 
are Cartesian coordinates on a plane perpendicular to w and with u to the east and v to the north. 
Dimensions in these coordinates are measured in wavelengths. Thus, the u,v plane coverage of the 
WSRT at a single time is as given in Figure 9.3.  
 
Much more complete uv 
plane coverage can be 
achieved by rotating the 
array, as shown in Figure 
9.4. Fortunately, the vast 
majority of astronomical 
radio sources are 
stationary – they do not 
vary significantly over long 
time periods. Therefore, 
we can use the rotation of 
the earth to fill in the uv 
plane; each telescope will 
travel along a section of an 
ellipse in the uv plane as 
the observations proceed. 
How well this works 
depends on the projection 
of the telescope array 
onto the uv plane; in some 

 

Figure 9.3. Telescope placement (left) and uv plane coverage (right) for a 

single observation with the WSRT. From Cohen, synthesis workshop. 

 

Figure 9.4. The rotation of a linear interferometer can fill out the uv 

plane coverage (from Garrett). The three-element linear array is shown 

to the left as it might be viewed from the source. There are three 

possible baselines among its telescopes; as the array is rotated, these 

three baselines provide coverage in 360o arcs in the uv plane. 



directions, e.g., at the celestial equator, the ellipses may be significantly foreshortened (for a linear E-W 
array like Westerbork). The situation for the WSRT is summarized in Figure 9.5, and the foreshortening is 
illustrated in Figure 9.6.  



 

 

Figure 9.5. uv plane coverage with Westerbork for full synthesis. The latitude of the telescope is 

approximately 53o, accounting for the excellent coverage at a declination of 60o. At the celesctial 

equator, the rotation of the earth does not change the array orientation in celestial coordinates.  

Other declinations are intermediate in behavior. From Cohen. 

 

Figure 9.6. The uv plane coverage (left) of a two-element 

interferometer at 40o latitude, for a radio source at +30o 

declination, from Condon and Ransom. The right panel shows 

how foreshortening of the array is responsible for the less 

extensive coverage in the v direction. 



 Much more uniform uv plane coverage as a function of declination is achieved with two-dimensional 
arrays of telescopes such as the “Y” configuration of the 27 telescopes of the Very Large Array (VLA). In 
this case, the 25-m diameter telescopes can be moved to provide configurations ranging from D-array 
(minimum baseline 35 meter, maximum 1 km) to A-array (minimum baseline 0.68 km, maximum 36 km). 
It has receivers to provide data from 75 MHz to 40 GHz. The Giant Meterwave Radio Telescope (GMRT) 
has 30 telescopes each 45 meters in diameter, with 14 telescope in a compact central core and the 
remaining in a Y configuration similar to that of the VLA. It has receivers operating from 50 to 1420 MHz.  
A variety of other two-dimensional configurations have specific advantages; for example, spiral 
placement of the telescopes can yield many short baselines and good performance on extended 
emission, whereas placing them in a circle yields many long baselines. For example, the Atacamba Large 
Millimeter/Submillimeter Array (ALMA) will have 54 12-m telescopes, 12 7-m telescopes (covering 86 – 
720 GHz)  that can be put into a variety of configurations to tailor the performance for different 
applications. 
  
9.2.3. Very Long Baseline Interferometry 
 
The receiver outputs from a telescope 
array contain all the information 
required by the correlator to implement 
the interferometer imaging. Therefore, 
signals can be recorded and analyzed 
later. This feature allows implementation 
of interferometers among telescopes 
that are very widely spaced, of which the 
most extreme is very large baseline 
interferometry (VLBI) with telescopes 
spread across a continent or even 
further (see Figure 9.7).  These networks 
allow milli-arcsec resolution (at cm 
wavelengths), although some care is 
required in constructing images because 
of the unavoidable holes in the coverage 
of the uv plane.  Good images are, 
however, possible if the objects 
observed are relatively compact. VLBI 
can also be implemented among existing 
telescope arrays. A frequently-used combination is the VLA together with the MERLIN array of six 
telescopes in the United Kingdom. 
 
VLBI can measure absolute source positions to about one milli-arcsec and relative ones  significantly 
more accurately. A network of 212 bright, compact radio sources with VLBI positions is the foundation 
of the international celestial reference system (ICRF) in astrometry that we introduced in Section 4.4.4. 
These sources, such as quasars and flare stars, have been selected to be bright and point-like at optical 
wavelengths also, so they can be tied in accurately with astrometry there.  VLBI also has applications 
outside of astronomy. For example, through repeated measurements of sources that we are confident 
are fixed in coordinates (e.g., compact quasars),  it is possible to determine the telescope separations to 
precisions of about a millimeter and measure continental drift. VLBI also provides very accurate 
measurements of precession and nutation (Section 4.4.6) and of the rotation rate of the earth (which is 

Figure 9.7. The Very Long Baseline Array (VLBA), from 

Garrett. 



slowing). Accurate time keeping requires reconciliation of the length of the day with coordinated 
universal time (UTC) and the occasional slight adjustments (“leap seconds”) are determined from VLBI. 
 
Equation (9.3) was discussed in terms of two telescope of equal diameter, but it holds in general. As a 
result, there are interesting options for VLBI using 
a modest-sized telescope in orbit or even on the 
moon to provide a huge baseline. If a very large 
groundbased telescope is used, the effective area 
can be reasonably large and hence good 
sensitivity can be obtained.  
 
9.2.4. Interpretation of Aperture Synthesis Data 
 
Ideally, we would use our telescope array (and the 
rotation of the earth) to measure visibilities for 
our source densely spaced over the entire uv 
plane. The Fourier transform of this visibility 
function V(uv) would give us an image of the 
target source just as if it had been observed with a 
filled aperture telescope with diameter equal to 
the diameter of our telescope array: 
 

                                         
 
(by the Van Cittert-Zernicky Theorem). However, realistic telescope arrays and observing strategies will 
leave gaps in the uv plane coverage, and as a result we have a “dirty” image:  

                                          

where S(u,v) is the sampling function over the uv plane, 1 where we have a measurement and 0 
otherwise. Consequently, our point spread function will have more artifacts than would have been the 
case in the ideal case. From the form of equation (9.15) and the convolution theorem, our image is 

                                      
the true distribution convolved with our point spread function, which may depart significantly from the 
ideal if S(u,v) is sparse. B(x,y) is termed the dirty beam : 

                                        

See Figure 9.8 for an example of a dirty beam. Even if our target area is the simple case of a field of 
unresolved sources, the superposition of the dirty beams for all of them will leave our image looking like 
a bit of a mess, as in Figure 9.9.  
 
The simplest approach to converting data such as in Figure 9.9 into something suitable to show off to 
others is the Hogbom CLEAN algorithm. To implement it, one: 
1.) assumes that the image can be approximated by a field of point sources;  
2.) Locates the position of the brightest point in the dirty map; 
3.) subtracts a scaled version of the dirty beam from this position; the subtraction should account for 
only a modest fraction of the brightness at this point; 
4.) Records the position and subtracted intensity in a “CLEAN component” file; 
5.) Finds the brightest position in the dirty map left from the subtraction; 

 

Figure 9.8. A Dirty Beam, from Garrett 



6.) repeats steps 3.) – 5.) until no 
subtraction is possible without making 
part of the dirty map negative. 
 
Figure 9.10 illustrates this process. 
Practical CLEAN algorithms have a 
number of adjustable parameters that 
can affect the final product – that is, 
the solutions are not necessarily 
unique and some form of judgment 
must be applied to select the “best” 
one. 
 
A number of enhancements are used 

to improve the performance of this 

simple approach. One of the most 

useful is analogous to apodization as 

discussed in Chapter 8. In this case, 

the process is called tapering, and it 

consists of convolving the visibility 

function with a function, often a 

Gaussian, that reduces the terms at 

the largest baselines, e.g.,  

           
                        

As with other forms of apodization, 

the image artifacts are suppressed at 

the expense of a larger synthesized 

beam diameter.  Another approach, 

called density weighting, generates a 

weighting factor proportional to the 

number of u, v measurements in a 

given area of the UV plane (which is 

divided into grided cells for the 

purpose of determining the weights). 

CLEAN is centered on the assumption 

that the image is a superposition of 

point sources and hence may give an 

overly structured reconstruction of an 

smooth and extended source. 

Alternative methods may be 

advantageous for extended sources, such as the Maximum Entropy Method (MEM) (described for radio 

 

Figure 9.10. Reduction in dirty beam artifacts with increasing 

number of CLEAN cycles (cc), from Garrett. 

 

Figure 9.9. A dirty map from aperture synthesis. From 

Garrett. 



data by Bryan and Skilling 1980, for example). MEM attempts to optimize two parameters 

simultaneously, one representing the goodness of the fit to the data and the other representing the 

smoothness of the image. More on the MEM method will eventually be available in Section 7.6.  

9.2.5. Reduction Issues with Aperture Synthesis 
 
A large proportion of the published radio imagery is based on aperture synthesis. In interpreting these 
results, the following issues need to be kept in mind. 
 
Telescope arrays cannot provide very small baselines, so nearly any aperture synthesis image will be 
missing low spatial frequencies (as we pointed out in the discussion of Figure 9.2). The result is that 
extended source structures may be completely missing; they cannot be recovered by smoothing the 
image or any of the other usual approaches to bring out extended, low-surface-brightness features 
because the instrument does not respond to them. The lost flux can be shockingly large. For example, 
the best WSRT and VLA images of the 
nearby galaxy M33 capture only about 
15% of the flux seen with maps using 
filled-aperture telescopes (Viallefond et 
al. 1986; Tabatabaei et al. 2007).  
 
The sensitivity of the constituent 
telescopes in an array extends at low 
levels to beyond the nominal primary 
beam. As a result, very strong radio 
sources can impose artifacts on the 
dirty map that are particularly difficult 
to remove with CLEAN or other 
algorithms because the source itself 
does not appear in the high-quality 
portion of the map – only its dirty 
artifacts do. Thus, the focus in CLEAN of 
finding the brightest point in the dirty 
map and assuming it is the position of a 
source breaks down and other 
approaches must be adopted to 
produce a usable image. As a result, 
high-quality reduction of very deep 
radio images is very challenging. 
 
The phase of the signals can be corrupted by the atmosphere of the earth, as illustrated in Figure 9.11. 
In the frequency realm of a few hundred MHz, the charged particles in the ionosphere can produce 
phase errors; refractive index variations due to atmospheric water vapor are responsible for increasingly 
large phase effects as the frequency increases above about 10 GHz, with coherence time ranging from 
minutes at the lower end to seconds in the submm. The impact of these effects can be reduced by 
observing calibrator sources and by taking data over short time intervals. Another way to reduce their 
effects is to use the information from at least three telescopes to determine the closure phase.  
Referring to Figure 9.11, the measured phase over each baseline consists of that due to the source, plus 
the difference of the phases induced by the atmosphere in the two individual beams: 

 

Figure 9.11. Generation of Phase Errors Over Three 

Telescopes. From Grainge. 
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The sum of equations (9.19) – (9.21) is 
             

  
  

  
  

  
               

In this closure phase the atmospheric-induced phase errors have all canceled. With four telescopes, it is 
possible to deduce a quantity analogous to the closure phase for the signal amplitudes. By modeling the 
closure phases and amplitude information in a telescope array, it is possible to deduce the source 
structure independent of the phase errors. These procedures are most effective on relatively bright 
sources, so that there is enough signal in a coherence time that the atmospheric effects are stationary. 
 
Another approach is called self-calibration. It requires that there is a point source in the primary beam 
that is bright enough to be detected in all the interferometer baselines within a coherence time. If so, 
then one can use a beginning model of the source, compute its visibilities and subtract from the 
observed ones,  use CLEAN on the residuals to deduce the implied correction in the model, and repeat 
the comparison. This iteration is repeated until it converges, as indicated when the corrections are no 
longer significant.  
 
9.2.6 The Future 
 
The VLA has been the flagship aperture synthesis array for cm-wave radio astronomy since its 
commissioning. The current transmission of signals from the VLA receivers to the correlators has limited 
IF bandwidth, a problem that is being solved by installation of optical fiber links between the telescopes. 
Similar upgrades have been made in MERLIN and the European VLBI network. These links will enable 
bandwidths of ~ 2 GHz, improving the achievable signal to noise by factors of 5-10 (equation 9.4). The 
broader frequency/wavelength coverage can also substantially improve the coverage of the uv plane; 
since u and v are measured in wavelength units, a given physical baseline corresponds to a range of 
positions in uv if the range of wavelengths is significant. 
 
We have already mentioned ALMA in the context of telescope configurations for interferometers. This 
array of 54 12-m telescopes and 12 7-m ones is placed at an altitude of about 5000 meters on the 
Chajnantor plateau in Chile, above the great majority of the atmospheric water vapor. (Recall from 
Section 1.4.2 that the scale height for water vapor in the atmosphere is about 2km, so there is only 
about 8% of the nominal sea-level value at the ALMA altitude). The dramatic reduction in the water 
vapor over ALMA both enhances the atmospheric transparency in the submm substantially and reduces 
the phase errors. ALMA incorporates state-of-the art sideband-separating receivers and broadband IF 
links for very high sensitivity over a range of 86 to 720 GHz. The telescopes can be moved into a variety 
of configurations to optimize ALMA for specific types of observation. ALMA will begin operation soon 
with some of its telescopes. 
 
Our discussion of the limitations to the sizes of filled-aperture radio telescopes, plus equation 9.4 and 
the discussion surrounding it, suggests a new approach to very large collecting areas. One could build a 
huge number of modest sized telescopes (thus providing large primary beams, making imaging and 
mapping efficient) into an aperture synthesis interferometer. Since the number of correlators grows as 
the number of baselines, e.g. as N(N-1) for N telescopes, one is trading mechanical challenges for 
electronic ones. Judging by the growth of optical telescopes over the last century, the doubling time for 
telescope diameters is about 30 years, whereas the well-known Moore’s Law places the doubling time 



for electronic capability at about two years, so the trade is a good one. A realization of this concept is 
the Allen Telescope Array. Operations started with 42 6-m telescopes in 2007, with plans to expand to 
350. A far more ambitious plan is for the Square Kilometer Array (SKA), so named because the plan is to 
provide a square kilometer of collecting area. The SKA is planned to have a combination of different 
antenna types with the most ambitious being some thousands of 12-m telescopes operating from 500 
Mhz to 10 GHz and with baselines up to 3000 km.  
 
9.3 Optical and Infrared Interferometry 
9.3.1 General Properties 
 
Heterodyne interferometry, 
as described for the radio 
regime in the preceding 
section, can also be 
employed in the infrared 
and optical. However, the 
limitations on IF bandwidth 
severely restrict the spectral 
bandwidth and the 
sensitivity achievable in 
even a narrow band is 
subject to the quantum 
limit, so only very bright 
sources can be observed 
successfully. Instead, most 
effort for these spectral 
regions has been in the 
development of homodyne 
instruments where the light 
from the interferometer 
elements is brought to a 
common station where it 
interferes. The necessity to 
interfere the light from the 
interferometer beams 
directly rather than 
converting each beam to an 
electronic signal that can be 
used to reproduce the 
interference places strong demands on the interferometer designs. 
 
9.3.2 Interferometry with Separate Telescopes 
 
A form of interferometer similar to that in Figure 9.1 but incorporating this new restriction is shown in 
Figure 9.12. The Very Large Telescope Interferometer (VLTI) and Keck Interferometer (KI) are of this 
general design, as are a number of smaller-scale instruments. In this approach, the path length over 
which interference occurs, the coherence length, is reduced as the spectral bandwidth is increased: 

 

Figure 9.12. An Infrared (or optical) two-element interferometer 

connecting two telescopes on separate mounts, from Grainge. 
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An optical train or “delay line” with precision moving elements is used to make the path length 
correction to this level of accuracy. It is too complex to try to correct the path difference to this accuracy 
over a significant field of view. Therefore, the usable field is very small, 
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In addition, the correcting optics are in air, so the dispersion of air (equation (7.1)) results in different 
path length corrections for different wavelengths, or more practically, places a restriction on the 
spectral band that can be observed for a single correction.  For example, for a 100m baseline, a spectral 

resolution of /  ~ 12 is the maximum allowable at J band (1.25 m) to get good fringe visibilities.  

 
Because the imaging field is severely restricted by the requirements for path length correction, 
interferometers such as in Figure 9.1 use pupil-plane combination, i.e., they superimpose afocal beams. 
The superimposed beams can be brought to a single detector or small array; the fringes are shifted to 
modulate the signal by varying the path length.  Getting good fringe visibilities also depends on 
controlling the spatial- and time-varying phase shifts imposed by the atmosphere, which we discussed at 
length with regard to adaptive optics (Section 7.1). Spatial phase errors can be reduced by tip-tilt 
corrections, with some further improvement with higher-order AO corrections. Another approach is to 
filter the signal frequencies light, by passing the light through either a single-mode optical fiber or a 
pinhole aperture. This approach results in variable intensity as the cost of reducing the fluctuations in 
the visibility. Temporal phase variations occur on the coherence timescale as in equations (7.7)- (7.10). 
From the discussion surrounding these equations, the spatial phase errors decline and the coherence 

time increases as 6/5, so the requirements for interferometry are much more easily met in the infrared 
than in the visible. Nonetheless, pupil-plane interferometers modulate the fringes by scanning the path 
length rapidly (10-20 msec) so that slight variations in phase do not cause loss of the signal, but change 
its timing within the scan (see Figure 9.15). 
 

 

Figure 9.14. Pupil-plane (also called Michelson) and image-plane beam (also called Fizeau) 

combination, from Phil Hinz. 



High-quality interferometry demands that the phase be tracked dynamically and corrected. There are 
two general approaches. One is to track the general range where coherence holds and adjust the path to 
maintain the operation there. For example, in group delay tracking, one disperses the interference 
fringes; when the path length is not correct, the fringe spacing will vary with wavelength and after 
dispersion the fringes will be tilted relative to the zero-path-difference configuration. This approach 
allows relatively long integrations – several seconds – and hence can be applied to relatively faint 
targets.  More accurate stabilization of the fringes requires fringe tracking, in which the fringes are 
measured directly and 
therefore at high frequency. 
In general, the phase can be 
determined to an accuracy 
corresponding to 
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where w is the fringe width, 
B is the baseline and SNR is 
the signal to noise. Thus, a 
SNR > 10 is needed to 
measure the phase to 10% 
of the fringe width.  
 
Where the object is being 
measured at a wavelength 
where the signal to noise is 

low (e.g., at 10 m where 
the thermal background can 
limit the sensitivity), it can 
be advantageous to divide the light spectrally and carry out these operations at a different wavelength 

where the source can be detected more easily (e.g., 2 m).  A related procedure, called differential 
interferometry, is to carry out the phase measurements on a spectral region adjacent to the one being 
measured (e.g., on a region of continuum emission from a central source, where the interferometry is 
examining the distribution of surrounding line emission).  
 
As a consequence of the operational restrictions (very small field, need to have a bright source to track 
and stabilize phase), multi-telescope optical/infrared photometry is must easily conducted where the 
source itself has a bright, unresolved component. Fortunately, there are many high-priority astronomical 
problems that present just this situation: 1.) resolving the structure of protoplatetary disks; 2.) searching 
for massive planets; 3.) studying outflows from young and old stars; 4.) measuring stellar diameters; or 
5.) probing the regions around active galactic nuclei. 
 
So far we have only discussed interferometers that produce constructive interference of the target 
source. For some applications, it is more desirable to produce destructive interference – that is, to 
stabilize the phase on fringes or a constructively interfered image, but to obtain the science data where 
the path length has been adjusted to make this bright source disappear so far as possible. These nulling 
interferometers are a powerful way to look for faint extended structures around bright sources and are 
an alternative in this regard to the coronagraphs discussed in Section 7.5. 
 

 

Figure 9.15. Output of a pupil-scanning interferometer (top) and 

path length scanning (bottom), from Grainge. 



9.3.3. Common-Mount Interferometry 
 
An alternative approach to Figure 9.1 is to use two telescopes on a common mount, arranged so they 
track a target nominally with no path length difference between their outputs. The true path length 
difference is then relatively small, so no elaborate delay lines are required to make the necessary 
adjustments to achieve interference. Of course, to achieve interference, a modest pathlength 
adjustment is required, and it must be controlled to compensate for the atmospheric phase variations 
(fast) and flexure in the telescope (slow). The price of this arrangement is that long baselines are not 
feasible. However, there is potentially another major advantage – such instruments can provide 
reasonably large fields of view with image diameters corresponding to the interferometer baseline.  
 
To provide an imaging field, the interferometer must obey the sine condition requiring that the image 
plane have the same geometry as the object plane. That is, the relation of the telescopes as viewed from 
the source must be preserved optically when their outputs are superimposed to cause them to 
interfere. Preserving the sine condition is virtually impossible with telescopes on separate mounts, 
hence their small fields of view.  However, since placing the two telescopes on the same mount can 
relieve the issues associated with delay lines, this optical requirement can be met straightforwardly.   
The outputs of the telescopes need to be brought together with this geometry at an image plane (right 
side of Figure 9.14). There, the image of a point source will be the Fourier Transform of the entrance 
aperture(s), and will not vary substantially over the field of the instrument. The image of a spatially 
resolved object is then the convolution of its spatial distribution of flux with this point spread function.  
 
 Common-mount interferometers must also satisfy the requirements for phase stability. Because they 
are imaging instruments, a full AO correction is desirable to provide constant spatial phase over their 
fields of view. Fringe tracking requires measuring the fringe position in the imaging plane and stabilizing 
it by feeding back a correction into the pathlength compensator.  
 
With separate- and common-mount interferometers, earth rotation is used to fill in the uv plane and 
probe the structure of a source in two dimensions on the sky, just as discussed for radio 
interferometers. 
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