Correct answers shown in boldface. Be sure to write your name and student ID number on the first blank at the bottom of the form, the exam version number and letter on the second (subject) one, and your section number (7 for 11:00, 8 for 12:00) in the "period" one. If you need to erase an answer, please do so carefully and remove all of the old mark.

1. An astronomer is designing a new telescope to use in space. The Hubble Space Telescope operates at wavelengths close to 500nm (1 nm = 10^{-9} meter). The new telescope is to be used at 50,000nm (100 times the HST wavelength and in the infrared).
 a. such a telescope is not needed because nothing emits at 50,000nm
 b. such a telescope would be better built at sea level
 c. to keep costs down, the new telescope should be a refractor instead of a reflector
 d. **such a telescope will need to be 100 times larger in diameter than HST to see the same level of detail**
 e. because we already have observed so much at 50,000nm, the new telescope won’t find anything new.

2. Gravity is an important force in shaping the Universe because
 a. it is the strongest force we know
 b. **it works well over long distances and there is no antigravity**
 c. actually, it does not play much of a role off the surface of the earth
 d. it holds the protons and neutrons in the nucleus of an atom
 e. it is the only inverse r squared force

3. The Universe is
 a. open b. **at the critical density between open and closed** c. closed d. oscillating
 e. articulating

4. We know that the Universe is only about 6% protons and neutrons - baryons - because
 a. if there were more, the Universe would be closed
 b. **fusion reactions would have produced more lithium and maybe heavier elements if there had been more baryons**
 c. we don't really know this because most of the mass is in a poorly understood form
 d. because the things around us are made of 6% baryons
 e. from measuring the properties of dark matter

5. The term "solar cycle" refers to
 a. a solar-powered bicycle
 b. **the 22 year pattern in sunspots and magnetic field direction**
 c. the cycles in the solar wind as major sunspots go around with the sun’s rotation
 d. the length of time it takes the Sun to orbit the center of the Milky Way
 e. cyclic changes in the solar output that cause long term climate change

6. Which two things are needed to determine an object's distance from the Earth if it is too distant to use trigonometric parallaxes?
 a. velocity and luminosity b. velocity and apparent brightness
 c. **apparent brightness and luminosity** d. apparent brightness and size
 e. temperature and color

7. Two stars both have spectral type A. One has a luminosity that is 1000 times larger than the other. What parameter differs the most between these two stars?
 a. temperature b. color c. **size** d. spin rate e. distance
8. A white dwarf does not collapse further because
 a. it is converting H to He
 b. it is held up by neutron pressure
 c. its electrons can't be squeezed together any more
 d. its dark matter can’t be compressed
 e. it is so hot that the internal pressure is too large

9. Planetary nebulae are
 a. in the process of forming planets
 b. material ejected by nova explosions
 c. the ejected outer layers of a dying star
 d. the precursors to black holes
 e. material left over from the protoplanetary disks of protostars

10. These days, astronomers usually use _______ for obtaining observations of visible photons from stars
 a. their eyes
 b. refracting telescopes
 c. galvanometers
 d. electronic detectors
 e. notebooks of previous astronomers

11. We will eventually be able to locate where the Big Bang occurred
 a. by accurate measurements of galaxy velocities and distances
 b. by measuring the redshifts of very distant quasars
 c. using gravitational lenses
 d. by measuring anisotropies on the cosmic background radiation
 e. it is not possible to locate the big bang in these ways

12. Astronomers cannot look directly back to further than when the Universe was 300,000 to 500,000 years old because
 a. before that, the Universe was too crowded with stars
 b. visible photons were not produced until the Universe was 300,000 years old
 c. dust in the early Universe absorbed the light
 d. the Universe was made of dense, ionized gas that was opaque to light
 e. of Olber’s paradox

13. The most basic building blocks of matter that we know about are
 a. protons, neutrons, and electrons
 b. photons
 c. neutrinos
 d. antiprotons and antineutrons
 e. quarks

14. One of the reasons the sky is dark at night is
 a. we are in a dark part of the Milky Way
 b. there is a lot of dark matter out there
 c. the Universe is expanding
 d. dust blocks our view in almost every direction
 e. we can’t see far enough to pick up all the sources of light

15. The electromagnetic force does not dominate interactions between celestial bodies because
 a. it is too weak
 b. it acts only over short distances
 c. it needs magnetic materials to be effective
 d. actually, it does dominate such interactions
 e. positive charges largely cancel the effects of negative ones

16. A "closed" universe is
 a. one that will expand forever
 b. one that will collapse back on itself some long time in the future
 c. one enclosed in a dark matter box
 d. one we can’t see out of
 e. one that nothing can get into from outside
17. How does the average density of the Universe affect its predicted fate?
 a. a high density Universe will expand more vigorously than a low density one
 b. if the Universe has a high density, its expansion is expected to reverse and it will collapse
 c. if the Universe has a high density, it will eventually form many more galaxies than now
 d. a high density Universe will have many more stellar collisions
 e. if the density is too high, the Universe will form too few heavy elements like lithium

18. Most of the hydrogen was made when?
 a. in the first generation of massive stars
 b. in thermonuclear reactions in supernova explosions
 c. in thermonuclear reactions in the first few minutes of the Universe
 d. the hydrogen was the first element to form from fundamental particles
 e. we do not understand where all the hydrogen came from

19. The period of very rapid inflation in the early Universe solves the mystery
 a. of why the Universe is at the critical density
 b. why the Universe is expanding
 c. why balloons are sometimes used to illustrate the expansion
 d. why there is so much empty space
 e. how the ratio of hydrogen to helium is what it is

20. The granules visible on the Sun's surface are evidence of
 a. large amounts of iron b. convection c. magnetic storms d. gas escaping into space
 e. the origin of flares and prominences

21. The Sun's photosphere has a temperature of about 6000 degrees. What wavelength regime would be most useful for studying the photosphere?
 a. X-rays b. long wavelengths c. far infrared light d. radio waves e. visible light

22. We are confident the output of the sun has remained nearly constant over billions of years because
 a. the theory of hydrogen fusion indicates so b. weather records show little change with time
 c. fossils show similar life forms to some that are still around
 d. the solar activity counteracted the effects of its gravitational contraction
 e. none of these

23. Iron fusion can produce energy because
 a. at the end the electrons in the atoms have gone to lower energy levels and given off the energy they lost
 b. the atoms join together into bigger molecules, and the molecular binding energy is released
 c. the fusion products weigh a little less than the input materials, and the mass that is lost appears as energy
 d. the high pressure where the fusion takes place yields some of its energy
 e. none of the above

24. The low luminosity stars on the main sequence
 a. are the hottest b. have the longest lifetimes
 c. are the least common d. have the most helium
 e. both a. and b.
25. To measure the luminosity of the sun from the earth, we need to measure
 a. Earth's distance from the sun
 b. the flux Earth receives from the sun (the apparent brightness of the sun at the earth)
 c. the sun's composition
 d. all of a., b., and c.
 e. both a. and b.

26. In the figure at the right, which star has the smallest surface area?
 a. star A b. star B
 c. star C d. star D
 e. star E

27. The basic properties that control the current status of a star are
 a. age, mass, initial composition
 b. temperature, distance, color
 c. spectral type, composition, temperature
 d. distance, magnitude, color
 e. age, color, spectral type

28. The Sun will end its life as
 a. a neutron star
 b. a pulsar
 c. a black hole
 d. a brown dwarf
 e. none of the above

29. Pulsars vary their light output by
 a. alternately expanding and contracting
 b. alternately heating up and cooling off
 c. sweeping a light beam across our line of sight
 d. converting H to He
 e. changing their mass

30. Observational proof that neutron stars exist is provided by
 a. black holes b. hot stars c. pulsars d. X-ray sources e. novae

31. We know that the Crab nebula is a supernova remnant because
 a. it contains a pulsar
 b. Chinese astronomers witnessed the explosion
 c. it emits lots of X-rays
 d. its gas is moving very rapidly
 e. all of the above

32. Moderate weight elements like carbon and oxygen are formed
 a. in the cores of massive stars
 b. in planetary nebulae
 c. in main sequence stars
 d. in supernova explosions
 e. in the Big Bang

33. Stars on the main sequence all
 a. are in hydrostatic equilibrium
 b. have the same mass
 c. have the same temperature
 d. have the same diameter
 e. there is no property in common among main sequence stars
34. If you add mass to a white dwarf to "bulk it up" above 1.4 solar masses,
 a. it will get smaller and smaller and finally collapse into a neutron star
 b. it will develop strong coronal lines because of its high surface temperature
 c. it will increase in radius in proportion to the cube root of the additional mass
 d. the new matter will cause it to cool on the surface and get fainter
 e. the matter will disappear beyond its event horizon and we will not know what happens

35. "anti matter"
 a. is repelled by the gravitational field of the earth
 b. is a prediction of physics that has not been found yet
 c. is the material some of the other planets might be made of
 d. is particles with opposite charge to matter and that annihilate into energy when they encounter matter particles
 e. is an invention in science fiction stories

36. Heavy elements like silver and gold are formed
 a. on planetary surfaces
 b. in planetary nebulae
 c. in main sequence stars
 d. in supernova explosions
 e. in the Big Bang

37. The early stages of development of the Universe
 a. are surprisingly well understood through a combination of physics and astronomy
 b. are really hard to study because conditions were so extreme
 c. cannot be studied well because the redshift has shifted all the light into the low frequency radio region
 d. may have been either steady state or big bang in nature
 e. were a time when a totally different physics operated

38. The Sun's output is so stable because
 a. release of energy by gravitational contraction makes up for any change in the rate of fusion
 b. the Sun doesn't produce much energy, so its reserves will last a long time
 c. the Sun rotates fast enough to keep everything inside well mixed
 d. the Sun has only small sunspots
 e. pressure of Sun's gas just balances gravitational contraction, maintaining constant conditions inside the sun

39. If the earth were further from the Sun than it actually is, the parsec (assuming we kept the same definition) would be
 a. larger b. smaller c. the same d. could not be determined

40. Supernovae occur when
 a. the core of a star blows up because it gets too hot
 b. the outer layers of a star collapse onto the core, and explode in the shock wave sent back from the impact
 c. a layer of hydrogen on the surface of the star undergoes fusion converting hydrogen to helium
 d. a catastrophe in the stellar nucleus sends a heat pulse out through the star
 e. the neutrinos escape from the core of the star, causing it to cool and collapse
41. The assumption that the Universe is homogeneous on very large scales is
 a. a **starting point for ideas about the Universe, called the Cosmological Principle**
 b. contradicted by the expansion shown in Hubble's Law
 c. just an assumption with nothing to back it up
 d. now known to be incorrect, an issue called the Horizon Problem
 e. shown to be wrong by the structure on the 3 degree background

42. In the first half of the Twentieth Century, Harvard rose to the top among world observatories because
 its directors
 a. Raised money to build a major new telescope
 b. Established strong interdisciplinary ties with the physics department
 c. **Hired women astronomers**
 d. Moved it to an outstanding site for observations
 e. Got a lot of funding from the Federal Government

43. Observatories are put into space to
 a. get above bad weather and clouds
 b. keep NASA busy doing things in the public interest
 c. as a demonstration of the capabilities of astronauts
 d. **to observe at wavelengths where the photons do not reach the ground**
 e. to get them closer to the stars

44. The cooling rate of SN 1987A showed that
 a. it was so full of hot gas it could only lose energy slowly
 b. it was a Type I supernova
 c. it was still deriving a lot of energy from the new neutron star at its core
 d. **it contained huge amounts of newly formed cobalt**
 e. its neutrinos were captive and contributing heat

45. Most of the helium in the Universe was made
 a. when the first generation of stars fused their hydrogen into helium
 b. in reactions in supernova explosions
 c. it was created at the beginning from fundamental particles
 d. in ways we are still trying to understand
 e. **in fusion reactions during the first few minutes of the Universe**

46. To make higher resolution pictures of astronomical objects, one can
 a. change the shape of the surface of the telescope mirror to interfere the light, not image it
 b. observe at longer wavelengths
 c. **use more than one telescope and bring their outputs together in an interferometer**
 d. observe for longer times to gather more signal
 e. use the sharpen filter in PhotoShop

47. The best way to “weigh” the Universe – see how much mass it contains – is to
 a. count up all the mass in the galaxies
 b. use Newton’s and Kepler’s laws
 c. **study the sizes of the faint emission features in the cosmic background radiation**
 d. measure the light output from the dark matter
 e. wait and see if its expansion continues or slows down
48. To determine the relative amounts of dark matter and baryons, we can
 a. measure the amount of lithium
 b. measure the contrast of the emission features on the cosmic background radiation
 c. compare the dark matter in stars with their hydrogen and helium
 d. measure the brightness of distant supernovae to get accurate distances to the remote Universe
 e. do both a. and b.

49. Astronomers locate black holes by
 a. looking for regions in space that appear not to have any background stars
 b. detecting the X-rays emitted by matter heated in the process of falling into the black hole
 c. using dark matter detectors
 d. looking for unexplained deflections in the motions of stars through space
 e. there is no good way to look because they are so black

50. When matter has been “used up” in a massive star and is ejected, it
 a. is exhausted and plays no further role in the Universe
 b. can form into white dwarfs and neutron stars but no longer can form normal stars
 c. gets caught up in interstellar clouds and eventually may form into new stars
 d. escapes into intergalactic space where it can eventually form new galaxies
 e. none of the above