CCDs and CMOS Imagers

Michael Lesser
lesser@itl.arizona.edu
Imaging Detectors

CMOS imager

Orthogonal Transfer Arrays

LSST buttable CCD

PanSTARRS focal plane - Hawaii
Imaging

90Prime

typically short exposures, requires large area & good cosmetics
Spectroscopy

Blue Channel Echellette Spectrum of the QSO SBS 1425+60
Redshift ~ 3.2. An optically-thick absorption system
removes the light in the UV. Lyman alpha emission
is in the 6th order from the top (Order 11).

long exposures, requires low dark current and low noise
Recent Scientific Detector Progress

• Bigger and bigger devices
 – 10kx10k CCDs (1 die per 150 mm diameter silicon wafer)
 – 8k to 10k CMOS imagers

• Orthogonal Transfer Arrays (OTA)
 – WIYN ODI, PanStarrs

• Extended spectral response
 – UV (193 nm and below), X-ray, direct electron bombardment
 – 800 – 1000 nm QE > 80%, reduced fringing

• Extremely tight mechanical specifications
 – 5 µm peak-valley flatness

• Large mosaics with buttable detectors
 – ~100 devices now, 200+ in next few years
 – mosaics of buttable 10kx10k detectors

• CMOS imagers
 – on-chip logic, lower voltages and power, radiation hardness, low noise results, lower cost(?)
 – Larger area, custom pixel sizes (larger than commercial)
CCD Architectures

Full frame
- entire area of CCD used to collect image
- best use of area, most common in astronomy
- requires a *shutter* during readout

Frame transfer
- *frame store* half of CCD covered with opaque mask
- *image store* half is unmasked and collects photons during integration
- rapid shift (1 – 100 millisecond) from image store to frame store after exposure
 (image and store parallel clocks must be separate)
- frame store read slowly while image store integrates next exposure
- reduces “dead time”
- no shutter required
- only half of silicon area collects light
CCD Architectures

Interline transfer

- opaque transfer bus along each column
- rapid shift from each pixel (or photodiode) to bus after exposure
- bus pixels readout during next exposure
- reduces dead time
- no shutter required
- significant opaque area
- fill factor < 1 even in image area
- common in cell phones and video cameras

Possible to increase fill factor by using microlenses, typically made by applying photosite to surface, etching, and thermal processing to produce lens shape.
Back Illuminated CCDs

- Optical absorption and multiple reflections from frontside structures (polysilicon gates and oxides) reduce efficiency.
- No blue/UV transmission through polysilicon.
- Solution is the thin CCD and illuminate detector from backside.
- Must remove highly doped p⁺ material which CCD is fabricated with to leave only epitaxial material. Typically 10-50 µm thick (100 µm for LSST).
- Interference fringing is worse than for thick devices.
- If a field-free region remains between the back surface and edge of depletion region, then charge spreading occurs and resolution is degraded. Worse in the blue as photoelectrons are generated near the back surface.
- Backside surface is a disrupted silicon crystal which has dangling chemical bonds, creating a positively charged interface. This traps electrons at the backside and so a freshly thinned CCD has very poor QE.
- Adding a negative charge to the back surface is called *backside charging* and lead to very high QE devices when coupled with AR coatings.
UA Foundry Scientific CCD Wafer Example

- STA design with fabrication through DALSA (now Teledyne DALSA)
- ITL post-fabrication processing
- 2 4kx4k CCDs
- 4 2688x512 CCDs
- 4 1200x800 CCDs
- 512x1024 FT guiders
- 128x128 AO devices
- FBI test devices

There are very few fabs in the world making scientific CCDs.
STA1600LN 10kx10k CCD

- world’s largest integrated circuit
- 1 die per 150 mm wafer
- 9 µm pixels
- 16 low noise outputs
- probing challenge
- detectors for LBT PEPSI instrument

one die per 150 mm silicon wafer

20k x 20k mosaic @ USNO
‘Standard” Back Illuminated CCDs from ITL

- Typical hybridized (flip chip) large format CCD
- Sensor bonded to thick silicon substrate
- Indium and gold bumps
- Epoxy underfill
- Die attached & wire bonded to Kovar, Invar, or ceramic package
- Cost ~$50,000 back illuminated (~ 2x front illuminated cost)

STA0500 4kx4k

STA4150 4kx4k

2kx2k VIRUS detector for HETDEX
ITL Backside CCD Processing Flow

The following process steps are performed after device fabrication, which leads to high cost of back illuminated CCDs:

- Select candidate die via wafer probing
- Mechanically backside grind
- Dice wafers
- Hybridize die to supports
- Wax protection of edges
- Selective etch
- Epitaxial etch
- Oxidize/passivate
- Chemisorption Charge
- Antireflection coat
- Package
- Characterize

ITL is ~11,000 square feet dedicated to scientific and industrial detector processing.
Wafer Probing for Scientific Detectors

- DC defects get worse when backside thinned
- Test shorts to 20 MΩ
- AC image (-60 C)

STA2200 Orthogonal Transfer Array CCD @ -60 C
Wafer Dicing

Dicing saw

Dicing chuck

UV tape releaser

Wafer taper
Detector Hybridization

- Flip chip bonders are used to align and bond detectors and substrates
- Infrared or split field aligners
- Similar to technology used to hybridize IR arrays to CMOS readouts

Stud bumper places gold bumps on each detector I/O pad
Detector Protection for Etching

Partial thinning (Antarctic 10k)

Wax dispensing
Acid Etching

- 1:3:8 HF:HNO₃:CH₃COOH selective acid solution
- Doping selectivity critical to achieve uniform thickness
- Typical doping levels $p^+ = 10^{18}$ cm⁻³; $p = 10^{15}$ cm⁻³

acid benches

4 hybridized die

epitaxial etch
Backside Coatings

ITL’s Chemisorption Process:
- Oxidize backside of thinned CCD to reduce interface trap density
- Apply thin metal film (10A silver) to promote negative backside charge
- Apply antireflection coating optimized for spectral region of interest
Packaging

Packaging is the attachment of the detector to a carrier which can be handled and has electrical I/O connections.

Flatness at operating temperature is critical for many scientific applications. Internal structures affect surface profile as does thermal expansion mismatch of materials.

VIRUS 2k CCD for HETDEX

4k CCD in Kovar tub

WIYN ODI SN8105
Packaging - Buttable Imager of WIYN ODI and LSST

One Degree Imager

CE5 frame:
Silicon Aluminum alloy for good thermal conductivity and thermal expansion match to silicon/ceramic

top

bottom

Aluminum Nitride ceramic

LSST
Wire Bonding

Wire bonder

Pull testing wire bonds for QA
Low Temperature Detector Metrology

ITL “Cryoscanner”

- Nanovea profilometer pens on large open frame stage with vibration isolation frame holding dewar
- Metrology performed from +25 C to -150 C
LSST Prototype Sensor Metrology

Data from CryoScanner @ -137 C

~4 μm peak-valley

LN$_2$ ‘dunker’
Focal Plane Assembly

Assembly of 14 backside devices onto focal plane

Installation of flex cables on backside of focal plane

backside details
Focal Plane Assembly

~25 um peak-valley

Final pODI focal plane on VIEW Summit 600 CMM
Curved Detectors

Early curved devices @ ITL in mid-1990’s but renewed interest from ESO for ELT
Reduce optical complexity or increase optical efficiency
Its fun when detectors explode!

500 mm radius of curvature

25 mm radius (1D)
Detector Characterization
CMOS Imagers

CMOS imagers utilize a CMOS fabrication process to create an array of photosensors, typically photodiodes. Common devices are monolithic in which readout circuitry is on the same device as the photosensors or hybrid in which the detector is hybridized or flip chip bonded to the readout.

Called active pixel sensors (APS) or passive pixel sensors (PPS), depending on pixel structure.
CCD - CMOS Readout Comparison

CMOS Imager
amps in every pixel

CCD Imager
few amps per device

From Janesick, OE Magazine, February 2002
CMOS Advantages

- Very low power usage – no high voltage required for amps, no large clock voltage swings for charge transfer, little off-chip electronics, 5 or 3.3 V operation.
- Radiation tolerate – CMOS fabrication process.
- ULSI – digital circuitry allows “on-chip” processing functions, such as ADC, logarithmic gain, multiple sampling, image compression, anti-jitter, color, etc.
- Random access of pixels – charge to voltage conversion at each pixel.
- No CTE issues as no charge transfer – less susceptible to traps.
- CMOS compatible with 90% of silicon fabrication facilities.

Single power source in and digital output is very attractive.
CMOS Disadvantages

- *Fill factor* is relative size of photosensor to pixel size. Smaller scale *design rules* for fabrication allow higher fill factor, but is always < 100%. Typically < 50%.
- Noise higher than CCD due to amplifier designs which must drive busses with higher current.
- Fixed pattern noise high compared to CCDs due to pixel to pixel and column to column gain variations (thousands of amplifiers and capacitors). Typically 0.1 – 3% variations. Very complex integrated circuits.
- Circuitry generates heat which increases (local) dark current.
- Shallow p-n junctions of CMOS processes limit light sensitivity.

- Commercial push is toward VERY small pixels (1 μm) for consumer electronics (Iphone 6 has ~ 3264 x 2448 1.5 μm pixel CMOS sensor)
4kx4k 15 μm pixel CMOS Imager

Micron Technology, Inc.- 4kx4k 15 μm pixel CMOS imager
Back Illuminated CMOS Imagers

- Illuminate from backside to enhance QE as with CCDs
- Avoid stimulating current in active pixel areas which can lead to ‘latchup’

Backside processing is similar to CCDs with the same silicon properties
Back Illuminated CMOS Imagers

Each pixel may have different characteristics
The absorptive quantum efficiency QE_{abs} is the fraction of incident photons which is absorbed in the detector,

$$QE_{abs} = (1 - r) \frac{S_0 - S_0 e^{-a(\lambda)x}}{S_0} = (1 - r)(1 - e^{-a(\lambda)x})$$

where x is the thickness of the detector and r is the reflectivity from the incident surface, α is the absorption coefficient, S_0 is number of incident photons.

Increase QE by…

1. reducing reflectivity with antireflection (AR) coatings
2. increasing absorption coefficient (material selection)
3. increasing thickness of absorbing material
Backside CCD QE

Wavelength (um)

Measured QE

Kodak KAF260
Thomson THX7398
Loral LM
Orbit 2kx4k
QE vs. Temperature
Backside QE Enhancement Physics

- “Backside potential well” after etching will trap photogenerated electrons and cause an uncharged device to have lower QE than a front illuminated device.
- Caused by positive charge at freshly thinned surface.
- Several techniques are used to produce high QE with backside devices:
 - Surface Charging
 - Chemisorption Charging (ITL)
 - Flash gates and UV flooding
 - Internal Charging
 - Implant (doping) and anneal (most common commercially)
 - Delta Doping (Molecular Beam Epitaxy)
Ideal QE
10, 20, 50, 100, 300 μm Silicon

no AR coatings

fringing reduced for clarity
LSST CCD - 93 µm thick

LSST STA1759A

Measured QE

Comparision to 17 micron thick device with same AR coating

University of Arizona Imaging Technology Laboratory
M. Lesser 16Jan08
Interference Fringing in Detectors

When the absorption length is large compared to the detector thickness, light can reflect multiple times between the front and back surfaces of a detector. This leads to constructive and destructive *optical interference* within the detector.

QE plot of back illuminated CCD

CCD image with fringing

zoomed fringing
Antireflection Coatings

• An AR coating is a thin film stack applied to the detector surface to decrease reflectivity; typically used on all modern imagers.

• Coating materials should have proper indices and be non-absorbing in the spectral region of interest.

• With absorbing substrates which have indices with strong wavelength dependence (like silicon), thin film modeling programs are required to calculate reflectivity.

• Designer must consider average over incoming beam (f/ ratio) and angle of incidence due to angular dependence.

Interesting materials for CCD/CMOS AR coatings...
• Hafnium Oxide
• Magnesium Fluoride
• Tantalum Pentoxide
• Silicon dioxide
Silicon Reflectivity

uncoated Si

1 layer - 550 Å HfO₂

2 layer - 500 Å HfO₂ + 1000 Å MgF₂

Reflectance (%) vs Wavelength (μm)
Ideal QE with AR Coatings

50 μm silicon uncoated + 1 layer + 2 layer
Fully Depleted Devices

- Fully depleted (300 μm thick at LBL, 50 μm thick commercially).
- Greatly reduced interference fringing and very high near-IR QE.
- Backside bias contact required for depletion (~100 V). Must be transparent.
- Very high resistance (ultra pure) silicon required to support complete depletion.
- Problems include sensitivity to cosmic rays, higher dark current, backside contact, and charge spreading (resolution loss).
Field Free Region – Charge Spreading

The region in a back illuminated CCD between the edge of the depletion region and the back surface is the “field-free” region. Photogenerated electrons can diffuse in all directions in this region, reducing resolution through charge spreading.

Experimentally,

\[
C_{ff} = 2x_{ff} \left(1 - \frac{L}{x_{ff}}\right)^{1/2}
\]

\(C_{ff}\) is the lateral diffusion diameter, \(x_{ff}\) is the field free thickness, and \(L\) is the distance from the backside surface where the photoelectron is generated.

5 \(\mu\)m FF region => 10 \(\mu\)m electron cloud

Higher resistivity material has deeper depletion region (~ \(1/\sqrt{N_A}\)), so \(x_{ff}\) is smaller.

50 \(\Omega\)-cm material typical, but > 10,000 \(\Omega\)-cm possible.
Charge Diffusion – “Full Depletion”

Fe-55 X-ray events
93 μm thick LSST CCD

-50 V backside bias

Cooling of custom silicon for high resistivity detectors

no backside bias
Cosmic rays are high energy (MeV) particles (protons, alphas, electrons, positrons, etc.) rate very approximately 100 events cm\(^{-2}\) hr\(^{-1}\)

Silicon is an excellent cosmic ray detector

Remove with multiple images

Thicker devices are more sensitive
Quantum Yield

One energetic interacting photon may create multiple electrons-hole pairs through collision (impact ionization) of electrons in conduction band.

\[QY = \frac{E}{E_{e-h}} \]

is the Quantum Yield, \(E_{e-h} \) is energy per electron hole pair.

\[E_{e-h, Si} = 3.65 \frac{eV}{e} \]

for \(E > 3.1 \) eV (\(\lambda < \sim 400 \) nm)

A 5.9 keV x-ray photon (Fe-55) will create \(~1620\) electrons per photon in Si
Detectors with Internal Gain

Some non-photoemissive detectors can also have electron gain and may be used for photon counting or very low light level applications.

- **Avalanche photodiodes** have gain due to impact ionization when the photoelectron is accelerated in a very high electric field within the silicon.
- **Internal gain CCDs** (TI and E2V) utilize an extended serial register and a very high electric field within each pixel. As the CCD shifts charge through this extended register, a small avalanche gain (1.01) is achieved. After ~100 gain stages, an electron packet larger than the read noise is generated and photon counting is possible.
Orthogonal Transfer CCDs - OTCCDs

- Orthogonal transfer devices replace channel stop with a clocked phase, so clocking in both axis directions can be achieved.
- If centroiding is performed with another detector, the feedback can be used to clock the OTCCD in any direction at high speed to minimize image blurring.
- OTCCDs are therefore most useful for high resolution imaging, eliminating the need for mechanical motion compensation such as tip/tilt mirrors.
- Problems include complexity (yield) and charge traps or pockets, which can be enhanced due to repetitive clocking.

A 5 electron trap will hold 5 electrons even as charge is shifted out of the pixel. Repetitive clocking enhances loss.

MIT/LL and John Tonry @ Univ. Hawaii
The Orthogonal Transfer Array (OTA)

Pan-STARRS and WIYN ODI projects will use OTAs, which monolithic arrays of OTCCDs

Advantages include low susceptibility to internal shorts and restriction of full well blooming to single OTCCD cells. Low shorts->high yield->low cost
WIYN ODI – STA2200/ITL Backside OTA

Frontside

Backside

Fe55 image

Logic glow

Grid projection

Localized defect
References

“Fundamental performance differences between CMOS and CCD imagers: Part II”, Janesick, James; Andrews, James; Tower, John; Grygon, Mark; Elliott, Tom; Cheng, John; Lesser, Michael; Pinter, Jeff, Proc. SPIE 6690, p. 3, 2007, also parts I and III

http://www.itl.arizona.edu http://www.hamamatsu.com
http://www.e2v.com http://www.fairchildimaging.com
http://www.ll.mit.edu/mission/electronics/AIT/aithome.html
Slides for Reference
Color Sensing – CMOS and CCD

- Color filters placed over each pixel and imaging processing is used to determine an ‘average color’ for each pixel based on local adjacent intensities.
- Low sensitivity and spatial resolution compared to monochrome imagers due to filters.

Bayer pattern commonly used

G R G R G R G R G R
B G B G B G B G B G
G R G R G R G R G R
B G B G B G B G B G

Not used in astronomy
CCD Architectures – detailed format
CCD Clocking

4-phase

implant modifies channel potential

2-phase
CCD Pixel Binning

- Timing pattern may be changed so charge from multiple pixels are added together
- Decreases spatial resolution of detector as creates bigger effective pixels
- Allows higher charge capacity and so larger dynamic range
- Increases read out speed since each pixel is not sampled at output
- Binning can be performed in columns or rows, with different binning factors
- Serial register pixels are usually made 2x the size of image pixels to allow 2x charge capacity
- Many CCDs have an Output Summing Well which is the last pixel of a serial register, independently clocked, and 2x the size of a serial pixel, to aid in binning
- Also called \textit{noiseless co-addition} since summing comes before readout, when read noise is generated

- For a shot-noise limited, uniform exposure,

\[SNR = [P_H P_V S(e^-)]^{1/2} \]

where \(S(e^-) \) is the average unbinned signal in electrons per pixel and \(P_x \) are binning factors
CCD Charge Transfer

- Charge in a pixel after N pixel shifts is \(S_N = S_i (CTE)^N \) where \(S_i \) is initial charge in pixel before shifting.

- The charge found \(n \) pixels after target pixel (\(S_i \)) following N pixel shifts is \(S_{N+n} = \frac{S_i (N \cdot CTI)^n}{n!} \exp(-N \cdot CTI) \).

Fe-55 X-ray illumination is a common method of measuring CTE, gain, charge diffusion, and noise. Each event creates a fixed number of photoelectrons in a small (~1 um) cloud. Fe55 x-rays (5.9 keV) do not pass through a glass dewar window.

Example: An Fe-55 X-ray event (1620 e\(^-\)) in the far corner of a 4kx4k device will contain only 1493 e\(^-\) at the output amplifier if CTE = 0.9999990 (92%)

CTE = Charge Transfer Efficiency = 1 - CTI
CCD Charge Transfer

Fe55 image analysis – histogram and CTE plots
CCD CTE Problems

- line trap – typically due to a short between phases in the image area
- parallel clock voltage at gates near short are reduced
- increased applied gate voltage increase normally reduces trap size by increasing effective V_{gate} near trap
- *fat zero* or *preflash* may fill traps – very low level exposure or direct input before integration exposure (adds noise)

global CTE problem – silicon issue?
Silicon Dark Current

科学的CCD暗电流信号通常<10 e/pixel/hour @ -100 C

参数是pA/cm² @ 293K

\[D(e^-) = 2.5 \times 10^{15} A_{\text{pix}} D_{\text{FM}} T^{1.5} e^{-E_g/2kT} \]

\(D_{\text{FM}} \)是nA/cm² @ 300K

\(A_{\text{pix}} \)是像素区域(cm²)
Incomplete backside charging may cause temperature and time dependent QE variations because the back surface is not pinned with the required negative charge density to drive all photoelectrons to the detector frontside.
Teledyne has developed a hybrid CMOS imager process much like IR detectors. Optimized silicon readout (ROIC) and optimized detector (silicon) allows high efficiency and low noise. Process has been aimed at high speed, but very low noise operation also possible.

- Formats up to 2kx2k, 18 um pixels
- <10 electrons read noise
- 100% fill factor
- Very cold operation possible as no charge transfer
- Compatible with IR array controllers